Celda de yunque de diamante

Esquema del núcleo de una celda de yunque de diamante. El tamaño del diamante es de unos pocos milímetros a lo sumo.

Una celda de yunque de diamante (DAC por sus siglas en inglés) es un dispositivo utilizado en experimentos científicos. Permite comprimir una pequeña pieza (de tamaño sub-milimétrico) de material hasta presiones extremas, las cuales pueden exceder los 300 gigapascales (3 000 000 atmósferas).[1]

El dispositivo ha sido utilizado para recrear la presión existente en lo profundo de los planetas, creando materiales y fases no observadas bajo condiciones normales. Ejemplos notables incluyen el hielo X no molecular,[2]nitrógeno polimérico[3]​ y xenón metálico (un gas inerte a bajas presiones).

Una celda de yunque de diamante consiste en dos diamantes que se oponen con una muestra comprimida entre los culets. La presión puede ser monitoreada utilizando un material de referencia cuyo comportamiento bajo presión es conocido. Los estándares de presión comunes incluyen la fluorescencia del rubí,[4]​ y varios metales estructuralmente simples, tales como cobre o platino.[5]​ La presión uniaxial provista por la celda de yunque de diamante puede ser transformada en presión hidrostática uniforme utilizando un medio transmisor de presión, tales como argón, xenón, hidrógeno, helio, aceite de parafina o una mezcla de metanol y etanol.[6]​ El medio transmisor de presión está confinado por una junta y los dos yunques de diamante. La muestra puede ser vista a través los diamantes e iluminada por rayos X y luz visible. De esta forma, la difracción y fluorescencia de rayos X; absorción óptica y fotoluminiscencia; la dispersión Mössbauer, Raman y Brillouin; la aniquilación de positrones y otras señales pueden ser medidas a partir de materiales bajo alta presión. Un campo magnético y microondas puede ser aplicado de manera externa a la celda permitiendo la resonancia magnética nuclear, resonancia paramagnética electrónica y otras medidas magnéticas.[7]​ El adjuntar electrodos a la muestra permite medidas eléctricas y magnetoeléctricas así como el calentar la muestra a algunos miles de grados. Temperaturas mucho más altas (superiores a 7000 K)[8]​ pueden ser conseguidas con calentamiento inducido por láser,[9]​ y el enfriamiento hasta milikelvins ha sido demostrado.[6]

  1. Hemley, R. J.; Ashcroft, N. W. (1998). «The Revealing Role of Pressure in the Condensed Matter Sciences». Physics Today 51 (8): 26. doi:10.1063/1.882374. Archivado desde el original el 10 de junio de 2012. Consultado el 25 de febrero de 2013. 
  2. A.F. Goncharov, V.V. Struzhkin, M.S. Somayazulu, R.J. Hemley and H.K. Mao (julio de 1986). «Compression of ice to 210 gigapascals: Infrared evidence for a symmetric hydrogen-bonded phase». Science 273 (5272): 218-230. Bibcode:1996Sci...273..218G. ISSN 0036-8075. PMID 8662500. doi:10.1126/science.273.5272.218. 
  3. M. Eremets, R. J. Hemley, H. K. Mao and E. Gregoryanz, MI; Hemley, RJ; Mao, Hk; Gregoryanz, E (mayo de 2001). «Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability». Nature 411 (6834): 170-174. Bibcode:2001Natur.411..170E. ISSN 0028-0836. PMID 11346788. doi:10.1038/35075531.  |last1= y |autor= redundantes (ayuda)
  4. Forman, Richard A.; Piermarini, Gasper J.; Barnett, J. Dean; Block, Stanley (1972). «Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence». Science 176 (4032): 284. Bibcode:1972Sci...176..284F. PMID 17791916. doi:10.1126/science.176.4032.284. 
  5. Kinslow, Ray; Cable, A. J. (1970). High-velocity impact phenomena. Boston: Academic Press. ISBN 0-12-408950-X. 
  6. a b A. Jayaraman (1986). «Ultrahigh pressures». Reviews of Scientific Instruments 57 (6): 1013. Bibcode:1986RScI...57.1013J. doi:10.1063/1.1138654. 
  7. Bromberg, Steven E.; Chan, I. Y. (1992). «Enhanced sensitivity for high-pressure EPR using dielectric resonators». Review of Scientific Instruments 63 (7): 3670. Bibcode:1992RScI...63.3670B. doi:10.1063/1.1143596. 
  8. N. V. Chandra Shekar et al. (2003). «Laser-heated diamond-anvil cell (LHDAC) in materials science research». J. Mater. Sci. Techn. 19: 518. 
  9. *N.Subramanian et al. "Development of laser-heated diamond anvil cell facility for synthesis of novel materials"Current Science, 91 (2006) 175. (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search